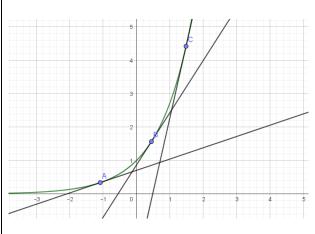
Convexité de fonctions

Convexité de fonctions Nous avons dans un précédent document défini la convexité d'une fonction et caractérisé le positionnement d'une fonction convexe par rapport à ses cordes. Dans le cas où la fonction convexe est dérivable, nous allons Remarque aussi constater qu'elle se positionne d'une certaine manière par rapport à ses tangentes et que la dérivée est une fonction croissante. Soit f une fonction dérivable sur un intervalle I. Les propositions suivantes sont équivalentes 1. f est convexe sur I f' est croissante sur *I*. Si *f* deux fois dérivable sur *I*, f" ≥ 0 **Théorème** 4. La courbe de f est située au dessus de ses tangentes. Nous avons ici représenté la courbe de la fonction exponentielle. Cette fonction deux fois dérivable possède une dérivée seconde positive sur R. Cette dérivée

Illustration

seconde positive prouve la convexité de la fonction. Sont représentées en trois points distincts les tangentes à la courbe. Ces tangentes se situent en dessous de la courbe.



Preuve

 $1 \Rightarrow 2$. Soit f convexe et dérivable sur I. Soient a, b et c dans I tels que a < b < c

Nous avons
$$\frac{f(b)-f(a)}{b-a} \le \frac{f(c)-f(b)}{c-b} \le \frac{f(c)-f(a)}{c-a}$$
 (*)

Nous avons $\frac{f(b)-f(a)}{b-a} \le \frac{f(c)-f(b)}{c-b} \le \frac{f(c)-f(a)}{c-a}$ (*) Faisons tendre b vers a dans cette inégalité (*). Nous obtenons $f'(a) \le \frac{f(c)-f(a)}{c-a}$

Faisons tendre b vers c dans cette inégalité (*). Nous obtenons $\frac{f(c)-f(a)}{c-a} \le f'(c)$ Nous avons donc montré que $f'(c) \ge f'(a)$. a et c ayant été choisis arbitrairement avec a < c cela démontre que f' est croissante.

 $2 \Leftrightarrow 3$. Evident

 $2 \Rightarrow 4$. Soit $a \in I$. La tangente en a à la courbe de f a pour équation y = f'(a)(x - a) + f(a)

Etudions la fonction
$$\varphi$$
: $\begin{cases} I \to \mathbb{R} \\ x \to f(x) - f'(a)(x-a) - f(a) \end{cases}$
De part sa construction φ est dérivable sur I . $\varphi'(x) = f'(x) - f'(a)$

f' étant croissante sur I, nous avons $\varphi'(x) \ge 0$ ssi $x \ge a$. Si nous dressons le tableau de variation de φ , cela nous amène à φ décroissante pour $x \le a$ et φ croissante sinon. φ admet donc un minimum sur I qui est $\varphi(a)$.

 $\varphi(a) = 0$. Nous en déduisons que φ est positive sur I ce qui entraine que la courbe de f est au-dessus de ses tangentes.

 $4 \Rightarrow 1$. Soient α et β deux valeurs de I ($\alpha < \beta$) et $t \in [0;1]$ tel que $\alpha = t\alpha + (1-t)\beta$. Donc $\alpha \in [\alpha;\beta]$

Nous savons que la courbe de f est au-dessus de sa tangente en x = a

Nous avons donc $\forall x \in I, f(x) \ge f'(a)(x-a) + f(a) \Rightarrow f(a) \le f(x) - f'(a)(x-a)$ En particulier $f(a) \le f(a) - f'(a)(a-a)$ et $f(a) \le f(\beta) - f'(a)(\beta-a)$

$$\begin{cases} f(a) \le f(\alpha) - f'(a)(\alpha - a) \\ f(a) \le f(\beta) - f'(a)(\beta - a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a)(\beta - a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(a)(a - \alpha) \\ f'(a) \le f(\beta) - f(a) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(\alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha) + f'(\alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha) + f'(\alpha)(a - \alpha) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(\alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha) + f'(\alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha) + f'(\alpha)(a - \alpha) \end{cases} \Rightarrow \begin{cases} f(a) \le f(\alpha) + f'(\alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha)(a - \alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha)(a - \alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha)(a - \alpha)(a - \alpha)(a - \alpha) \\ f'(\alpha) \le f(\alpha)(a - \alpha)(a -$$

$$\Rightarrow \begin{cases} f(a) \le f(\alpha) + \frac{f(\beta) - f(a)}{\beta - a}(a - \alpha) \\ f'(a) \le \frac{f(\beta) - f(a)}{\beta - a} \end{cases} \Rightarrow f(a) \left(1 + \frac{a - \alpha}{\beta - a} \right) \le f(\alpha) + f(\beta) \frac{(a - \alpha)}{\beta - a}$$

$$\Rightarrow f(a)(\beta - \alpha) \le (\beta - a)f(\alpha) + f(\beta)(a - \alpha) \Rightarrow f(a) \le \frac{(\beta - a)}{(\beta - \alpha)}f(\alpha) + f(\beta)\frac{(a - \alpha)}{(\beta - \alpha)} (**)$$

Or en revenant à la définition de $a: a = t\alpha + (1-t)\beta$

On obtient
$$a = t(\alpha - \beta) + \beta \Rightarrow a - \beta = t(\alpha - \beta) \Rightarrow t = \frac{a - \beta}{\alpha - \beta}$$
. De même $1 - t = 1 - \frac{a - \beta}{\alpha - \beta} = \frac{\alpha - \beta - a + \beta}{\alpha - \beta} = \frac{(a - \alpha)}{\beta - a}$

Injectons ces résultats dans (**). Il vient $f(a) \le tf(\alpha) + (1-t)f(\beta)$. Nous avons donc montré que la fonction était convexe.

	Bien entendu nous avons les équivalences symétriques : f concave $\Leftrightarrow f'$ décroissante \Leftrightarrow le graphe de f est situé au-dessous de ses tangentes.		
	Cette propriété de positionnement de la courbe par rapport à ses tangentes nous donne plusieurs inéglible pratiques :		
$\forall x$	$\alpha \in \mathbb{R}^{*+} \ln(1+x) \le x$	$\forall x \in \mathbb{R}, \exp(-x) \ge 1 - x$	$\forall x \in [0; \frac{\pi}{2}] \frac{2x}{\pi} \le \sin x \le x$
	Preuve	Preuve	Preuve
Remarque Donc f La tang au poir y = f conc ses tar	définie par $ \in \mathbb{R}^{*+} f(x) = \ln(1+x) $ It fois dérivable. $ f''(x) = -\frac{1}{(1+x)^2} $ $ f''(x) \le 0. f \text{ concave.} $ In the second of the	Soit f définie par $\forall x \in \mathbb{R} \ f(x) = \exp(-x)$ f deux fois dérivable. $f''(x) = \exp(-x)$ Donc $f''(x) \ge 0$. f convexe. La tangente à la courbe de f au point $x = 0$ a pour équation : $y = -\exp(-0)(x - 0) + \exp(0)$ $\Rightarrow y = -x + 1$ f convexe $\Rightarrow f$ au-dessus de ses tangentes. $\forall x \in \mathbb{R}, \exp(-x) \ge 1 - x$	Soit f définie par $\forall x \in \mathbb{R} \ f(x) = \sin x$ f deux fois dérivable. $f''(x) = -\sin(x)$ Donc $\forall x \in \left[0; \frac{\pi}{2}\right] \ f''(x) \le 0$ f concave La tangente à la courbe de f au point $x = 0$ a pour équation: $y = \cos(0) \ (x - 0) + \sin(0)$ $\Rightarrow y = x$ f concave $\Rightarrow f$ au-dessous de sestangentes. $\forall x \in \left[0; \frac{\pi}{2}\right] \ sinx \le x$ Les points $A(0; 0)$ et $B(\frac{\pi}{2}; 1)$ sont deux points de la courbe de f La droite (AB) a pour équation $y = \left(\frac{2}{\pi}\right)x$ et est une corde pour la courbe de f f concave $\Rightarrow f$ au-dessus de sestangentes. $\forall x \in \left[0; \frac{\pi}{2}\right] \ \frac{(2x)}{\pi} \le sinx$ Nous avons bien $\forall x \in \left[0; \frac{\pi}{2}\right] \ \frac{2x}{\pi} \le sinx \le x$