Exemples de calculs de limite

Dans l'ensemble de ces exercices l'enjeu consiste à lever la forme indéterminée

Exercice1

Déterminer $\lim_{x\to+\infty} \sqrt{x+1} - \sqrt{x}$

$$\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x}\left(1+\frac{1}{x}\right) + \sqrt{x}} = \frac{1}{\sqrt{x}} * \frac{1}{\sqrt{\left(1+\frac{1}{x}\right) + 1}}$$

 $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$; $\lim_{x \to +\infty} \frac{1}{\sqrt{\left(1 + \frac{1}{x}\right) + 1}} = \frac{1}{2}$; Donc $\lim_{x \to +\infty} \sqrt{x + 1} - \sqrt{x} = 0$

Exercice2

Déterminer $\lim_{x\to 0} \frac{2^{x}-1}{\sin x}$

$$\frac{2^{x}-1}{\sin x} = \frac{e^{x\ln 2}-1}{\sin x} = \frac{e^{x\ln 2}-e^{0*\ln 2}}{x-0} * \frac{x-0}{\sin x - \sin 0}$$

Soit f définie par $f(x)=e^{xln2}$. $\lim_{x\to 0}\frac{e^{xln2}-e^{0*ln2}}{x-0}=f'(0)=ln2$ Soit g définie par $g(x)=\sin x$. $\lim_{x\to 0}\frac{\sin x-\sin 0}{x-0}=g'(0)=1$

Donc $\lim_{x\to 0} \frac{2^{x}-1}{\sin x} = \frac{f'(0)}{g'(0)} = \frac{\ln 2}{1} = \ln 2$

Exercice3

Déterminer $\lim_{x\to 0^+} x \ln(\sin x)$

$$xln(sinx) = \frac{xsinxln(sinx)}{\sin x} = sinxln(sinx) * \frac{x}{\sin x}$$

Soit f la fonction définie par $f(x) = x \ln x$

 $sinxln(sinx) = f(\sin x)$. $\lim_{x\to 0} \sin x = 0$. $\lim_{x\to 0} f(x) = 0$. Donc $\lim_{x\to 0} f(\sin x) = 0$

 $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = 1 \text{ (d\'ejà vu plus haut)}$ Donc $\lim_{x \to 0^+} x \ln(\sin x) = 0$

Exercice 4 Déterminer
$$\lim_{x\to 0} \frac{2}{\sin^2 x} - \frac{1}{1-\cos x}$$

$$\frac{2}{\sin^2 x} - \frac{1}{1-\cos x} = \frac{2}{1-\cos^2 x} - \frac{1}{1-\cos x} = \frac{2}{(1-\cos x)(1+\cos x)} - \frac{1}{1-\cos x} = \frac{1}{1-\cos x} \left[\frac{2}{(1+\cos x)} - 1 \right]$$

$$= \frac{1}{1-\cos x} \left[\frac{2-1-\cos x}{(1+\cos x)} \right] = \frac{1}{(1+\cos x)}$$
Donc $\lim_{x\to 0} \frac{2}{\sin^2 x} - \frac{1}{1-\cos x} = \frac{1}{2}$

Momtrer que les seules fonctions de \mathbb{R}^{*+} dans \mathbb{R} telle que $\forall (x,y) \in \mathbb{R}^{*2} \mid f(x) - f(y) \mid \leq \frac{1}{1-\cos x}$ sont les

Exercice 5

Momtrer que les seules fonctions de \mathbb{R}^{*+} dans \mathbb{R} telle que $\forall (x,y) \in \mathbb{R}^{*2} |f(x) - f(y)| \leq \frac{1}{x+y}$ sont les fonctions constantes

Fixons y. $\forall x \in \mathbb{R}^*$, $|f(x)| \le |f(x) - f(y)| + |f(y)| \le \frac{1}{x+y} + |f(y)| \le \frac{1}{y} + |f(y)|$. Donc la fonction f est bornée.

De plus $\lim_{x \to +\infty} \frac{1}{x+y} = 0$ Donc $\lim_{x \to +\infty} |f(x) - f(y)| = 0 \Rightarrow \lim_{x \to +\infty} f(x) = f(y)$. Toute limite étant unique nous avons donc montré que la fonction f était constante sur \mathbb{R}^*

Réciproquement si f est constante alors $\forall (x,y) \in \mathbb{R}^{*2} |f(x)-f(y)| = 0$ et $\forall (x,y) \in \mathbb{R}^{*2} 0 \le \frac{1}{x+y}$

Exercice 6

- Soit g une fonction périodique de $\mathbb R$ dans $\mathbb R$, convergeant en $+\infty$. Montrer que g est constante
- Soient f et g de $\mathbb R$ dans $\mathbb R$ telles que f converge en $+\infty$, f+g croissante, g périodique Montrons que g constante
- Soit *T* la période de *g* et *n* un entier quelconque. $\forall x \in \mathbb{R}, g(x+nT) = g(x) \lim_{n \to +\infty} g(x+nT) = l$ donc $\forall x \in \mathbb{R}, g(x) = l$. g est constante
- Soit l tel que $\lim_{x\to +\infty} f(x) = l$. f+g étant croissante nous avons vu d'après le théorème de la limite montone pour les fonctions que $\lim_{x\to +\infty} f+g$ existe et qu'elle appartient à $\mathbb{R}\cup +\infty$

Si $\lim_{x\to +\infty} f+g\in\mathbb{R}$ alors vu la convergence de f nous avons la convergence de g ce qui d'après la question précédente nous donne le fait que g est constante

Si $\lim_{x\to +\infty} f+g=+\infty$ alors vu la convergence de f nous en déduisons $\lim_{x\to +\infty} g=+\infty$ alors soit T la période de g, nous avons $\forall x\in \mathbb{R}$ g(x)=g(x+nT) ce qui en faisant tendre n vers $+\infty$ nous amène à $g(x)=+\infty$

Nous sommes donc arrivés à une contradiction. Le seul cas possible est : $\lim_{x\to +\infty} f+g\in\mathbb{R}$ ce qui nous amène à g constante

Exercice 7

Soit f une fonction T périodique telle que f converge en ∞ . Montrer que f est constante

 $\forall x \in \mathbb{R} \ f(x) = f(x + nT)$ ce qui en faisant tendre n vers $+\infty$ nous amène à $f(x) = \lim_{x \to +\infty} f(x)$ Ceci étant vrai pour tout x, nous avons démontré la constance de f

Exercice 8

Soient a et b deux éléments de $\overline{\mathbb{R}}$ avec a < b et $f:]a; b[\to \mathbb{R}$ une foncton croissante. Montrer que l'application $\varphi: x \to \lim_{y \to x^+} f(x)$ est croissante

Nous savons déjà d'après un théorème du cours que cette application est définie. En effet f étant croissante sur \mathbb{R} , nous avons quelque soit $x \in \mathbb{R}$ l'existence de $\lim_{z \to x^+} f(z)$ et de $\lim_{y \to z^-} f(z)$ avec $\lim_{z \to x^-} f(z) \le f(x) \le \lim_{z \to x^+} f(z)$ Soient x et y deux réels avec y > x nous avons $f(x) \le \lim_{z \to x^+} f(z)$, $f(y) \le \lim_{z \to y^+} f(y)$ et $\lim_{z \to x^+} f(z) \le f(y)$ (En effet $\lim_{z \to x^+} f(z) = \inf f(]x, y]$).

Nous avons donc $f(x) \le \lim_{z \to x^+} f(z) \le f(y) \le \lim_{z \to y^+} f(z) \Longrightarrow f(x) \le \varphi(x) \le f(y) \le \varphi(y)$

Ce qui démontre que l'application φ est bien croissante.