maths-prepa-sv.fr / mpsi

		Fonction In	
Définition		ement croissante et continue sur $\mathbb R$. Elle est définie sur $\mathbb R$ et à valeurs dans $\mathbb R^{*+}$. t donc une bijection de $\mathbb R$ dans $\mathbb R^{*+}$. Nous appellerons sa réciproque la fonction nous noterons ln	
Propriété	De sa définition découlent les propriétés $\forall x \in \mathbb{R}^{*+} \exp(\ln(x)) = x$; $\forall x \in \mathbb{R}$, $\ln(\exp x) = x$		
Propriété	La fonction \ln est la réciproque d'une fonction continue, dérivable et ne s'annulant pas sur \mathbb{R} . Nous en déduisons la dérivabilité de la fonction \ln sur \mathbb{R}^{*+} . $\forall x \in \mathbb{R}^{*+}$ $\ln'(x) = \frac{1}{x}$. $\forall x \in \mathbb{R}^{*+}$, $\frac{1}{x} > 0$ donc la fonction \ln est croissante sur \mathbb{R}^{*+} .		
Exemple	Courbe représentative	-1 0 1 2 3 4 5 6 7 8 9 -2 -1 -2 -1	
Propriété	ln(1) = 0 en effet $ln(1) =$	$= \ln(\exp(0)) = 0$	
Propriété	$\forall x>0\ ln''(x)=-rac{1}{x^2}.\ ln''(x)<0$, la fonction est donc concave sur \mathbb{R}^{*+}		
Propriété	$\forall x, y \in \mathbb{R}^{*+} \ln(xy) = \ln(x) + \ln(y). \text{ D'où } \ln\left(\frac{1}{x}\right) = -\ln(x)$		
		Preuve	
$\exp(\ln(x) + \ln(y)) = \exp(\ln(x)) * \exp(\ln(y)) = xy$			
$\ln(xy) = \ln\left(\exp(\ln(x) + \ln(y))\right) = \ln(x) + \ln(y)$			
Propriété	opriété Soient p et q deux entiers naturels non nuls. $\forall x \in \mathbb{R}^{*+} \ln \left(x^{\frac{p}{q}} \right) = \frac{p}{q} \ln(x)$		
Preuve			
En deux temps. $\ln(x^p) = p \ln(x)$ se démontre à l'aide d'une récurence évidente. Nous savons en effet que $\ln(xy) = \frac{1}{2} \ln(xy)$			
ln(x) + l	$n(y)$ cela implique $ln(x^2)$	= $2 \ln(x)$. Le reste de la récurrence est immédiat. Puis, $\ln(x) = \ln\left(x^{\frac{4}{q}}\right) =$	
$q ln\left(x^{\frac{1}{q}}\right) \text{ donc } \ln\left(x^{\frac{1}{q}}\right) = \frac{lnx}{q}$ Définition La fonction logarithme prend la valeur 1 en un seul réel exp(1) = e. Ce nombre e est appelé constante			
Définition	La fonction logarithme prend la valeur 1 en un seul réel $\exp(1) = e$. Ce nombre e est appelé constante de neper et vaut approximativement $e \approx 2,71$		
Propriéte	Croissance comparée en	0 et en + $\propto \lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$ de même $\lim_{x\to 0} x \ln(x) = 0$	

Preuve

Nous savons que $\lim_{\chi \to +\infty} \frac{\exp{(X)}}{\chi} = +\infty$. Posons $\chi = \ln{t}$. Il vient $\lim_{\chi \to +\infty} \frac{\exp{(X)}}{\chi} = \lim_{t \to +\infty} \frac{\exp{(\ln{t})}}{\ln{t}} = \lim_{t \to +\infty} \frac{t}{\ln(t)}$ Donc $\lim_{t \to +\infty} \frac{t}{\ln(t)} = +\infty$. Ce qui implique $\lim_{t \to +\infty} \frac{\ln{t}}{t} = 0$.

$$\lim_{t \to 0} t \ln t = \lim_{x \to +\infty} \frac{1}{x} \ln \left(\frac{1}{x} \right) = \lim_{x \to +\infty} -\frac{\ln(x)}{x} = 0$$

Propriéte $ln(x) \approx x - 1$ au voisinage de 1 et $ln(1 + x) \approx x$ au voisinage de 0.

 $\lim_{x \to +\infty} \ln x = +\infty$ et $\lim_{x \to 0^+} \ln x = -\infty$

Preuve

La définition de la dérivabilité en 1, donne $\lim_{x\to 1} \frac{\ln x - \ln 1}{x-1} = \lim_{x\to 1} \frac{\ln x}{x-1} = ln'(1) = \frac{1}{1} = 1$

Donc $ln(x) \approx x - 1$ au voisinage de 1.

Propriété

En posant x = 1 + h il vient $ln(1 + h) \approx 1 + h - 1 \approx h$ au voisinage de 0.

Preuve
$\lim_{X\to +\infty} \ln X = \lim_{t\to +\infty} \ln \exp(t) \text{ en posant } X = \exp(t). \text{ Il vient } \lim_{X\to +\infty} \ln X = \lim_{t\to +\infty} \ln \exp(t) = \lim_{t\to +\infty} t = +\infty$
$\lim_{x \to 0^+} \ln x = -\infty = \lim_{x \to +\infty} \ln \left(\frac{1}{x}\right) = -\lim_{x \to +\infty} \ln(x) = -\infty$