maths-prepa-sv.fr / mpsi

Multiples, diviseurs	
Définition	Soient a et b deux élements de $\mathbb Z$. On dit que a divise b ou que a est un diviseur de b lorsqu'il existe un entier relatif c tel que $b=ac$. Cette relation se note $a \mid b$.
Remarque	Il est alors équivalent de dire que b est un multiple de a
Exemple	-3 est un diviseur de 21 car $21 = (-3) * (-7)$. On peut aussi dire que 21 est un multiple de -3 et de 7
Notation	L'ensemble des diviseurs de a est noté $div(a)$ et l'ensemble des mutliples de a est noté $a\mathbb{Z}$
Exemple	$div(12) = \{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 12\}; 6\mathbb{Z} = \{0; \pm 6; \pm 12; \pm 18; \pm 24 \dots\};$
Théorème	 La relation de divisibilité est une relation d'ordre sur N. Cela signifie qu'elle est : Reflexive : a a Antisymétrique : si a b alors b ∤ a Transitive : si a b et b c alors a c Sur ℤ seules la reflexivité et la transitivité sont assurées. L'antisymétrie ne l'est pas. En effet a - a et -a a pour a non nul.
Preuve	 Reflexivité: a a car a = a * 1 Transitivité: si a b alors ∃k ∈ Z tel que b = a * k. Si b c alors ∃k' ∈ Z tel que c = b * k'. Nous avons donc c = a * k * k'. = a * (kk') ce qui implique a c Antisymétrie sur N: si a b avec a ≠ b alors b = a * c avec c ∈ N et c > 1. On a donc b > a ⇒ b ∤ a
Propriété	Linéarité : si $a b$ et $a c$ alors $a \lambda b + \mu c$
Preuve	si $a b$ alors $\exists k \in \mathbb{Z}$ tq $b=ak$ si $a c$ alors $\exists k' \in \mathbb{Z}$ tq $c=ak'$ $\lambda b + \mu c = \lambda ak + \mu ak' = a(\lambda k + \mu k')$ Donc a divise $\lambda b + \mu c$
Propriété	Conservation du produit : si $a b $ et $c d$ alors $ac bd$
Preuve	si $a b$ alors $\exists k \in \mathbb{Z}$ tq $b=ak$ si $c d$ alors $\exists k' \in \mathbb{Z}$ tq $d=ck'$ Il vient $bd=ackk'$ et donc ac divise bd