maths-prepa-sv.fr / mpsi

Définition
et
thórème

ppcm

Soient a et b deux entiers relatifs. On appelle plus petit multiple commun de a et b et l'on note $a \vee b$ le nombre m entier naturel unique tel que $m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$

Preuve

A priori rien ne garantit l'existence de ce nombre.

- Si a = 0 ou b = 0 alors m = 0 convient très bien.
- Si $ab \neq 0$ Posons $m = \frac{|ab|}{a \wedge b}$

Soit
$$x \in m\mathbb{Z}$$
, $x = mp$ avec $p \in \mathbb{Z}$ $x = \frac{ab}{a \wedge b} p = a * \left(\frac{b}{a \wedge b}\right) * p = b * \left(\frac{a}{a \wedge b}\right) * p$

Donc $x \in a\mathbb{Z} \cap b\mathbb{Z}$, $m\mathbb{Z} \subset a\mathbb{Z} \cap b\mathbb{Z}$

Soit $x \in a\mathbb{Z} \cap b\mathbb{Z}$, x = ap et x = bq mais $a = a' * a\Lambda b$ et $b = b' * a\Lambda b$ avec $a'\Lambda b' = 1$

Donc $x = a' * a \wedge b * p$ et $x = b' * a \wedge b * q$ II vient $a' * a \wedge b * p = b' * a \wedge b * q \Longrightarrow a'p = b'q$

 $a' \mid b'q$ mais $a' \land b' = 1$ donc d'après le théorème de Gauss $a' \mid q \implies q = a'q'$

Nous avons donc $x = bq = b' * a\Lambda b * a'q' = q'(a'b' * a\Lambda b) = q'm \text{ donc } x \in m\mathbb{Z}, \mathbf{a}\mathbb{Z} \cap \mathbf{b}\mathbb{Z} \subset \mathbf{m}\mathbb{Z}$

Conclusion : $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$

Donc m existe. Est-il unique ? Supposons que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z} = m'\mathbb{Z}$ avec $m \neq m'$

Nous avons $m \in m'\mathbb{Z}$ et $m' \in m\mathbb{Z}$ donc m'|m et m|m' donc m = -m'. m et m' étant positifs, nous sommes devant une contradiction.

Propriété	Ce nombre $a \lor b \text{v\'erifie } a \lor b = \frac{ ab }{a \land b}$
Preuve	La démonstration a déjà été faite ci-dessus pour montrer l'existence de $a \lor b$
Théorème	Toute famille finie d'entiers relatifs possède un ppcm.
Preuve	Soit $a_1, a_2 \dots a_n$. L'associativité de l'intersection nous permet d'écrire $a_1 \mathbb{Z} \cap a_2 \mathbb{Z} \dots a_n \mathbb{Z} = (a_1 \mathbb{Z} \cap a_2 \mathbb{Z}) \cap \dots a_n \mathbb{Z} = m_1 \mathbb{Z} \cap a_3 \mathbb{Z} \dots a_n \mathbb{Z}$ (m_1 étant le ppcm de a_1 et a_2) et ainsi de suite de deux en deux, de trouver le ppcm de $a_1, a_2 \dots a_n$
Théorème	Soit $a_1, a_2 \dots a_n$ et $k \in \mathbb{Z}$ alors $ka_1 \vee ka_2 \dots \vee ka_n = k (a_1 \vee a_2 \dots \vee a_n)$
Preuve	$ka_1 \mathbb{Z} \cap ka_2 \mathbb{Z} \cap \dots ka_n \mathbb{Z} = k (a_1 \mathbb{Z} \cap a_2 \mathbb{Z} \cap \dots a_n \mathbb{Z}) = k (a_1 \vee a_2 \dots \vee a_n) \mathbb{Z}$
Exemple	$12 \vee 18 = 6(2 \vee 3) = 6 * 6 = 36$