maths-prepa-sv.fr / mpsi

Inégalité des accroissements finis		
Définition	Soit $f: D_f \to \mathbb{C}$ une fonction. Soit $K \in \mathbb{R}^+$. On dit que f est K –lipschitzienne sur D_f ssi $\forall x, y \in {D_f}^2, f(x) - f(y) \leq K x - y $	
Exemple	La fonction valeur absolue est 1 –lipschitzienne. En effet $ x-y+y \le x-y + y \Rightarrow x - y \le x-y $ De même $ y-x+x \le y-x + x \Rightarrow y - x \le x-y $ Nous avons donc $ y - x \le x-y $. La fonction valeur absolue est donc bien 1 –lipschitzienne	
Théorème	Soit $f: D_f \to \mathbb{C}$ une fonction K —lipschitzienne. Alors f est continue sur D_f	
Preuve		
Soit $x_0 \in D_f$. Soit $\varepsilon > 0$. Choisissons y tell que $ y - x_0 < \frac{\varepsilon}{K} \Rightarrow f(y) - f(x_0) \le \frac{\varepsilon}{K} * K \le \varepsilon$ On a bien $\forall \varepsilon > 0 \ \exists \eta > 0 \ (\eta = \frac{\varepsilon}{K})$ tell que $ y - x_0 < \frac{\varepsilon}{K} \Rightarrow f(y) - f(x_0) \le \frac{\varepsilon}{K} * K \le \varepsilon$. C'est la définition de la continuité en x_0		
Théorème	Soit I un intervalle de \mathbb{R} . Soit $f: I \to \mathbb{C}$ une fonction dérivable. On suppose que f' est bornée sur I . f' admet donc une borne infinie finie : $\ f'\ _{\infty}$ Alors f est $\ f'\ _{\infty}$ —lipschitzienne sur I .	
Preuve		
• Dans le cas où f est réelle. Soient x et y appartenant à I . L'égalité des accroissements finis nous donne : $\exists c \in I \ tel \ que \ f(y) - f(c) = f'(c)(x-y) \Rightarrow f(y) - f(c) = f'(c) (x-y) \Rightarrow f(y) - f(c) \leq f' _{\infty} x-y $ f est donc bien $ f' _{\infty}$ -lipschitzienne sur I		
• Dans le cas où f est complexe. Posons x et y appartenant à I . $f(y) - f(x)$ est un nombre complexe que nous pouvons mettre sous sa forme trigonométrique : $\rho e^{i\theta}$. Donc le nombre $e^{-i\theta}(f(y) - f(x))$ est un nombre réel Posons φ : $\begin{cases} I \to \mathbb{R} \\ t \to Re(e^{-i\theta}f(t)) \end{cases}$		
$ f(y) - f(x) = \left e^{-i\theta} \right f(y) - f(x) = \left e^{-i\theta} \left(f(y) - f(x) \right) \right $ Or $e^{-i\theta} \left(f(y) - f(x) \right) \in \mathbb{R}$ donc $ f(y) - f(x) = \left Re(e^{-i\theta} \left(f(y) - f(x) \right) \right) \right = \left Re(e^{-i\theta} f(y)) - Re(e^{-i\theta} f(x)) \right $ $ f(y) - f(x) = \varphi(y) - \varphi(x) $ φ est une fonction réelle. φ est dérivable sur I car f est dérivable sur I ($e^{-i\theta}$ est une constante)		
$\varphi'(t) = Re(e^{-i\theta}f(t))' = Re(e^{-i\theta}f'(t))$		
	Nous avons $\forall t \in I$, $ \varphi'(t) \le Re(e^{-i\theta}f'(t)) \le e^{-i\theta}f'(t) \le f'(t) \le f'(t) \le f' _{\infty}$ Appliquons maintenant l'inégalité des AF à φ fonction réelle. $ \varphi(y) - \varphi(x) \le f' _{\infty} y - x $	
Nous	Or nous savons que $ \varphi(y) - \varphi(x) = f(y) - f(x) $ Nous avons donc bien $ f(y) - f(x) \le f' _{\infty} y - x $ f est bien une fonction $ f' _{\infty}$ -lipschitzienne sur I	

Soit f(x) = sinx. f définie sur \mathbb{R} . f'(x) = cos x. Donc $\forall x \in \mathbb{R} |f'(x)| \le 1$.

Appliquons l'inégalité des accroissements finis entre 0 et x quelconque. Il vient $\forall x \in \mathbb{R}, |f(x)-f(0)| \leq 1|x-0| \leq |x| \Rightarrow |sinx| \leq |x|$

Exemple