
Convexité 
Soit 𝐼 un intervalle et 𝑓 une fonction définie sur 𝐼 

Propriété Soient 𝑥 et 𝑦 deux réels avec 𝑥 < 𝑦 . Soit 𝜆 un réel compris entre 0 et 1. Lorsque 𝜆 décrit [0; 1] alors le 
réel 1 − 𝜆 𝑥 + 𝜆𝑦 décrit toutes les valeurs de l’intervalle [𝑥; 𝑦] 

Preuve 
L’écart entre 𝑥 et 𝑦 est le réel 𝑦 − 𝑥. En construisant le réel 𝑥 + 𝜆(𝑦 − 𝑥) avec 𝜆 ∈ [0; 1] on construit donc un réel 
compris entre 𝑥 et 𝑦. Si 𝜆 = 0 on est sur 𝑥 et si 𝜆 = 1 on est 𝑦. Dans le cas où 0 < 𝜆 < 1 on est entre 𝑥 et 𝑦. Or 
𝑥 + 𝜆 𝑦 − 𝑥 = 𝑥 +  𝜆𝑦 − 𝜆𝑥 = 𝑥 1 − 𝜆 + 𝜆𝑦. Le réel 1 − 𝜆 𝑥 + 𝜆𝑦 décrit donc toutes les valeurs entre 𝑥 et 𝑦.  

Définition 

Soit I un intervalle et 𝑓: 𝐼 → ℝ une fonction.  
• On dit que 𝑓 est convexe sur l’intervalle I si 𝑓 est située en dessous de ses cordes. C’est-à-dire 

∀𝑥, 𝑦 ∈ 𝐼, ∀𝜆 ∈ [0; 1] 𝑓  1 − 𝜆 𝑥 + 𝜆𝑦 ≤  1 − 𝜆 𝑓 𝑥 +  𝜆𝑓(𝑦) 
• On dit que 𝑓 est concave sur l’intervalle I si 𝑓 est située au-dessus de ses cordes. C’est-à-dire 

∀𝑥, 𝑦 ∈ 𝐼, ∀𝜆 ∈ [0; 1] 𝑓  1 − 𝜆 𝑥 + 𝜆𝑦 ≥  1 − 𝜆 𝑓 𝑥 +  𝜆𝑓(𝑦) 

Illustration 

  

Fonction Convexe Fonction Concave 
Remarque Il est équivalent de dire que 𝑓 est une fonction est concave ou que −𝑓 est une fonction convexe.  

Théorème 

Soit 𝐼 un intervalle et 𝑓 une fonction deux fois dérivable sur un intervalle I. Les assertions suivantes sont 
équivalentes :  

1. 𝑓 est convexe sur 𝐼 
2. 𝑓! est croissante sur 𝐼 ou bien 𝑓!! ≥ 0 si 𝑓 est deux fois dérivable sur 𝐼 
3. Le graphe de 𝑓 est situé au-dessus de ses tangentes.  

Illustration 

 

𝑓 est convexe donc au-dessus de ses tangentes. 

Preuve 
Montrons   𝟐 → 𝟏 
 
Soient 𝑥 et 𝑦 deux réels avec 𝑦 > 𝑥. Considérons 𝜑 la fonction définie par  
𝜑 𝜆 =  𝑓  1 − 𝜆 𝑥 + 𝜆𝑦 −  1 − 𝜆 𝑓(𝑥) − 𝜆𝑓(𝑦) 
𝜑 𝜆 =  𝑓  𝑥 + 𝜆 𝑦 − 𝑥  −  1 − 𝜆 𝑓(𝑥) − 𝜆𝑓(𝑦)  
𝜑′ 𝜆 = 𝑦 − 𝑥  𝑓′  𝑥 + 𝜆 𝑦 − 𝑥  + 𝑓(𝑥) − 𝑓(𝑦) 
𝑦 − 𝑥 > 0 donc 𝑓! croissante implique 𝜑! croissante.  
Remarquons que 𝜑 0 = 𝜑 1 = 0 
Supposons 𝜑! 1 < 0.  𝜑′ étant croissante cela impliquerait ∀𝑡 ∈ 0; 1   𝜑′ 𝑡 < 0 
Or 𝜑 1 = 𝜑 0 + 𝜑′ 𝑢 𝑑𝑢!

! . L’intégrale d’une fonction négative étant négative nous avons :  
𝜑 1 < 𝜑 0 . Ce qui est impossible puisque 𝜑 0 = 𝜑 1 . Donc 𝜑! 1 ≥ 0. Pour les mêmes raisons nous ne pouvons 
avoir 𝜑′ 0 > 0. Donc 𝜑′ 0 ≤ 0. 𝜑′ est croissante et part d’une valeur négative pour aller vers une valeur positive. 
Nous en déduisons d’après le théorème des valeurs intermédiaires que 𝜑′ est négative sur un intervalle [0; 𝑐] (avec 
𝑐 ∈ [0; 1]) puis positive sur un intervalle [𝑐; 1]. Rappelons que 𝜑 0 = 𝜑 1 = 0. Nous en déduisons avec un tableau de 
variations que 𝜑 est négative sur [0 ; 1] 
Donc 𝑓  1 − 𝜆 𝑥 + 𝜆𝑦 ≤ 1 − 𝜆 𝑓(𝑥) − 𝜆𝑓(𝑦). Donc 𝑓 convexe 
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Montrons   𝟏 → 𝟐 
Pour cela nous avons besoin de deux lemmes.  

Lemme1 :Soit 𝑓: 𝐼 → ℝ une fonction convexe et 𝑎 ∈ 𝐼 Alors 𝑔! la fonction définie par 
𝐼 − 𝑎 → ℝ
𝑥 → ! ! !!(!)

!!!
 est une fonction 

croissante.  

Autrement dit sur le schéma ci-contre  ! !! !!(!)
!!!!

≤ ! !! !!(!)
!!!!

 pour  
𝑥! ≤ 𝑥! 

Pour démontrer cette propriété il suffit de remarquer que  𝑥! étant entre 𝑎 et 
𝑥! il peut s’écrire comme 𝜆𝑎 + (1 − 𝜆)𝑥! avec 𝜆 ∈ [0; 1] 
𝑓 étant convexe nous avons 𝑓 𝜆𝑎 + 1 − 𝜆 𝑥! ≤ 𝜆𝑓 𝑎 + 1 − 𝜆 𝑓 𝑥!  

𝑓 𝑥! ≤  𝜆𝑓 𝑎 + 1 − 𝜆 𝑓 𝑥!  
𝑓 𝑥! − 𝑓 𝑎 ≤  𝑓 𝑎 𝜆 − 1 + 1 − 𝜆 𝑓 𝑥!  
𝑓 𝑥! − 𝑓 𝑎 ≤ 1 − 𝜆 𝑓 𝑥! − 𝑓 𝑎  

 
Remarquons ensuite que !!!!

!!!!
= !"! !!! !!!!

!!!!
= (!!!)(!!!!)

!!!!
= 1 −  𝜆 

Il vient : 
𝑓 𝑥! − 𝑓 𝑎 ≤  !!!!

!!!!
𝑓 𝑥! − 𝑓 𝑎  soit! !! !! !

!!!!
≤  ! !! !! !

!!!!
  

Donc 𝑔! 𝑥! ≤  𝑔! 𝑥!  ce qui indique que 𝑔! est croissante. 
Type equation here. 
 

 

Lemme2 : Soient 𝑎, 𝑥, 𝑦 et 𝑏 quatre réels rangés dans un ordre strictement 
croissant. 𝑓 convexe implique ! ! !!(!)

!!!
≤ ! ! !!(!)

!!!
 

 
Nous avons vu d’après le lemme1 que 𝑔! est croissante.  
𝑎 < 𝑦 donc 𝑔! 𝑎 ≤ 𝑔! 𝑦  
𝑔! est croissante donc 𝑔! 𝑥 ≤ 𝑔! 𝑏  
 
Remarquons que 𝑔! 𝑦 = ! ! !! !

!!!
= 𝑔! 𝑥  

Il vient 𝑔! 𝑎 ≤ 𝑔! 𝑦 = 𝑔! 𝑥 ≤ 𝑔! 𝑏  
 

Revenons à la démonstration principale ( si 𝑓 convexe alors 𝑓′ croissante ) 
Nous avons pour 𝑎 < 𝑥 < 𝑦 < 𝑏   𝑔! 𝑎 ≤   𝑔! 𝑏   (∗) 
Remarquons que 𝑓! 𝑎 = lim!→!

! ! !!(!)
!!!

= lim
!→!

  𝑔! 𝑎   

De même 𝑓! 𝑏 = lim!→!
! ! !!(!)

!!!
= lim

!→!
  𝑔! 𝑏    

En faisant donc tendre 𝑥 vers 𝑎 et 𝑦 vers 𝑏 dans (∗) il vient 𝑓! 𝑎 ≤ 𝑓! 𝑏 ,  nous avons donc montré que 𝑓′ est 
croissante.  
 
Montrons   𝟐 → 𝟑 
Il s’agit de montrer que si 𝑓’ est croissante, alors la courbe de 𝑓 est au-dessus de ses tangentes. 
La tangente au point 𝑥 = 𝑎 a pour équation 𝑦 = 𝑓! 𝑎 𝑥 − 𝑎 + 𝑓(𝑎) 
Construisons la fonction 𝜑 définie par 𝜑 𝑥 = 𝑓 𝑥 − 𝑓! 𝑎 𝑥 − 𝑎 + 𝑓 𝑎 = 𝑓 𝑥 − 𝑓! 𝑎 𝑥 − 𝑎 − 𝑓 𝑎  
𝜑′ 𝑥 =  𝑓′ 𝑥 − 𝑓′(𝑎).  𝑓′ étant croissante 𝜑′ sera négative pour 𝑥 ≤ 𝑎 et positive sinon. 
𝜑 sera donc décroissante lorsque 𝑥 ≤ 𝑎 et croissante sinon. (dresser un tableau de variations pour plus de lisibilité) 
𝜑 admet donc un minimum en 𝑥 = 𝑎. Ce minimum vaut 𝜑 𝑎 = 𝑓 𝑎 − 𝑓! 𝑎 𝑎 − 𝑎 − 𝑓 𝑎 = 0 
Donc 𝜑 est positive au voisinage de 𝑎 ce qui signifie 𝑓 𝑥 ≥ 𝑓! 𝑎 𝑥 − 𝑎 + 𝑓 𝑎  soit 𝑓 est au-dessus de sa tangente.  
 
Montrons   𝟑 → 𝟐 
Il s’agit de montrer que si 𝑓 est au-dessus de ses tangentes alors 𝑓 convexe.  
Prenons deux réels 𝑎 et 𝑏 avec 𝑎 < 𝑏.  
L’équation de la tangente au point 𝑎 a pour équation 𝑦 = 𝑓! 𝑎 𝑥 − 𝑎 + 𝑓 𝑎  
𝑓 est au-dessus de ses tangentes sur un intervalle 𝐼 donc ∀𝑥 ∈  𝐼 𝑓 𝑥 ≥ 𝑓! 𝑎 𝑥 − 𝑎 + 𝑓 𝑎  
Pour 𝑥 ≥  𝑎 𝑓! 𝑎 ≤  ! ! !!(!)

!!!
 

L’équation de la tangente au point 𝑏 a pour équation 𝑦 = 𝑓! 𝑏 𝑥 − 𝑏 + 𝑓 𝑏  
𝑓 est au-dessus de ses tangentes sur un intervalle 𝐼 donc ∀𝑥 ∈  𝐼 𝑓 𝑥 ≥ 𝑓! 𝑏 𝑥 − 𝑏 + 𝑓 𝑏  
Pour 𝑥 ≤  𝑏 𝑓! 𝑏 ≥  ! ! !!(!)

!!!
 

 
Le lemme1 précédent nous indique que ! ! !!(!)

!!!
≤ ! ! !!(!)

!!!
. Il vient 𝑓! 𝑎 ≤ ! ! !! !

!!!
≤ ! ! !! !

!!!
≤ 𝑓! 𝑏  



Nous avons donc montré que 𝑓′ est croissante.  
 
Nous avons donc montré 𝟏⟺ 𝟐⟺ 𝟑 

Exemples 

Ces équivalences permettent de trouver beaucoup d’inégalités.  
• Prenons la fonction 𝑙𝑛 définie sur ℝ!∗..∀𝑥 ∈ ℝ!∗.  𝑙𝑛 !! 𝑥 = − !

!!
 . La dérivée seconde étant 

négative, nous en déduisons que la fonction est concave. Donc  
∀𝑥, 𝑦 ∈ ℝ!∗, ∀𝜆 ∈ 0; 1  𝑙𝑛  1 − 𝜆 𝑥 + 𝜆𝑦 ≥ 1 − 𝜆 ln 𝑥 + 𝜆ln𝑦 
Pour 𝜆 = !

!
 ∀𝑥, 𝑦 ∈ ℝ!∗ 𝑙𝑛  !!!

!
 ≥  !" !

!
+ !" !

!
≥  ln ( 𝑥𝑦 ) 

• Prenons la fonction 𝑒𝑥𝑝 définie sur ℝ..∀𝑥 ∈ ℝ.  𝑒𝑥𝑝 !! 𝑥 = − exp 𝑥 . La dérivée seconde 
étant positive, nous en déduisons que la fonction est convexe.  
Donc ∀𝑥, 𝑦 ∈ ℝ!∗, ∀𝜆 ∈ 0 ; 1  𝑒  !!! !!!" ≤  1 − 𝜆 e! +  𝜆𝑒! 
Posons 𝑝 et 𝑞 tels que !

!
= 𝜆 et !

!
= 1 − 𝜆  

Il vient 𝑒
!
!!

!
! ≤ !!

!
+ !!

!
. Posons 𝑥 = 𝑙𝑛𝑎 et 𝑦 = 𝑙𝑛𝑏. Il vient 𝑒

!"#
! !!"#!  ≤ !!"#

!
+ !!"#

!
 

Soit 𝑒
!"#
! 𝑒

!"#
! ≤ !!"#

!
+ !!"#

!
 ⟺ 𝑒

!"!
!
!

𝑒
!"!

!
!

≤ !
!
+ !

!
⟺ 𝑎

!
!𝑏

!
! ≤ !

!
+ !

!
⟺ 𝑎! 𝑏

!
≤ !

!
+ !

!
 

• Reprenons la fonction 𝑙𝑛. Cette fonction étant concave la fonction est en dessous de ses 
tangentes. La tangente au point 𝑎 est donnée par l’équation 𝑦 = 𝑓! 𝑎 𝑥 − 𝑎 + 𝑓(𝑎) 
Il vient ∀𝑥 ∈ ℝ!∗ 𝑙𝑛𝑥 ≤ !

!
𝑥 − 𝑎 + ln (𝑎) 

Définition. 
Théorème 

Soit 𝐼 un intervalle et 𝑓 une fonction définie sur 𝐼. Soit 
𝑎 ∈ 𝐼 mais n’est pas une borne de 𝐼. On dit que 𝑎 est un 
point d’inflexion de 𝑓 s’il existe un réel 𝑟 et un réel 𝑠 tels 
que 𝑓 convexe sur [𝑟, 𝑎] et 𝑓 concave sur 𝑎, 𝑠  (ou le 
contraire) 

 

Remarques 

• Si 𝑓 est deux fois dérivable alors il revient au même de dire que la fonction 𝑓′′ s’annule en 
changeant de signe en a.  

• Sur la zone de concavité la courbe est au-dessus de ses tangentes. Sur la zone de convexité 
la courbe est au-dessous de ses tangentes. En 𝑥 = 𝑎 la tangente traverse la courbe. (voire 
courbe ci-dessus) 

Exemple 
L’exemple le plus classique est la fonction 𝑓: 𝑥 → 𝑥!. 𝑓! 𝑥 = 3𝑥!. 𝑓!! 𝑥 = 6𝑥 
La dérivée seconde est donc négative sur ℝ! et positive sur ℝ!. Elle 
s’annule en changeant de signe en 𝑥 = 0. 0 est donc bien un point 
d’inflexion de la fonction. 

 
  


