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Convexité

Soit I un intervalle et f une fonction définie sur I

Soient x et y deux réels avec x < y . Soit 1 un réel compris entre 0 et 1. Lorsque A décrit [0; 1] alors le
réel (1 — )x + Ay décrit toutes les valeurs de l'intervalle [x; y]

Propriété

Preuve

L’écart entre x et y est le réel y — x. En construisant le réel x + A(y — x) avec 4 € [0; 1] on construit donc un réel
comprisentre xety.Sid=0o0nestsurxetsii=1onesty. Danslecasou0<A1<1onestentrexety.Or
x+Ay—x)=x+ Aly—Ax =x(1 — 1) + Ay. Le réel (1 — 1)x + Ay décrit donc toutes les valeurs entre x et y.

Soit | un intervalle et f:1 —» R une fonction.
e Ondit que f est convexe sur I'intervalle | si f est située en dessous de ses cordes. C’est-a-dire
Définition Vx,y €I, VA€ [0;1] f((1-Dx+Ay) < 1 -Df(x)+ Af (y)
* Ondit que f est concave sur l'intervalle | si f est située au-dessus de ses cordes. C’est-a-dire
Vx,y €I, VAE[0;1] f(A—-MDx+y)= (1 -Df(x)+ Af(y)

\A f(A=A)x+Ay) 2
(1= A F(R) 4 Af () frereesi (1=A)f(x) + Af(y)'

lllustration FA= A+ Ay) forvetenenee

-4 -3 4 5 6 7 8 9 10
(1-A)x+Ay y

X (1-A)x+Ay vy

Fonction Convexe Fonction Concave

Remarque | Il est équivalent de dire que f est une fonction est concave ou que —f est une fonction convexe.

Soit I un intervalle et f une fonction deux fois dérivable sur un intervalle |. Les assertions suivantes sont
équivalentes :

Théoréme 1. f estconvexe sur [

2. f' estcroissante sur I ou bien f"' > 0 si f est deux fois dérivable sur I

3. Le graphe de f est situé au-dessus de ses tangentes.

lllustration f est convexe donc au-dessus de ses tangentes.

Preuve

Montrons 2 -1

Soient x et y deux réels avec y > x. Considérons ¢ la fonction définie par

D)= fF(A-Dx+2y)— A-Df(x) - Af (¥)

) = flx+2y—x))— A -Df(x) —Af ()

PD=0-0f(x+Ay-x))+f(x) - fQ)

y —x > 0 donc f' croissante implique ¢’ croissante.

Remarquons que ¢(0) = ¢(1) =0

Supposons ¢'(1) < 0. ¢" étant croissante cela impliquerait vt € [0;1] ¢'(t) <0

Or (1) = ¢(0) + folgo'(u)du. L’intégrale d’une fonction négative étant négative nous avons :

¢(1) < ¢(0). Ce qui est impossible puisque ¢(0) = ¢(1). Donc ¢'(1) = 0. Pour les mémes raisons nous ne pouvons
avoir ¢'(0) > 0. Donc ¢'(0) < 0. ¢’ est croissante et part d’'une valeur négative pour aller vers une valeur positive.
Nous en déduisons d’aprés le théoréme des valeurs intermédiaires que ¢’ est négative sur un intervalle [0; c] (avec
¢ € [0; 1]) puis positive sur un intervalle [c; 1]. Rappelons que ¢(0) = ¢(1) = 0. Nous en déduisons avec un tableau de
variations que ¢ est négative sur [0; 1]

Donc f((1 —Dx+Ay) < (1 —A)f(x) —Af(y). Donc f convexe




Montrons 1 - 2
Pour cela nous avons besoin de deux lemmes.

I—{a}-> R
Lemme1 :Soit f: I —» R une fonction convexe et a € I Alors g, la fonction définie par {x N f(x)—f(a)} est une fonction
xX—a
croissante.
Autrement dit sur le schéma ci-contre f(x;)_i(a) < f(xj)_i(a) pour
1— 2=
X < X,

Pour démontrer cette propriété il suffit de remarquer que x; étant entre a et
x, il peut s’écrire comme Aa + (1 — )x, avec 4 € [0; 1]
f étant convexe nous avons f(la + (1 — D)x,) < Af(a) + (1 — D) f (x,)
flx) < Af (@) + (1 = Df (x2)
flx)—fl@) < f(@@-1)+ 1 -Df(xz)
fx) = f(@) < (1 =D(f(x) = f(@))

Remarquons ensuite que =% = 2+ 0 h0e-a) _ 4 _ )
Xp—a Xp—a Xp—a
Il vient :
_ x1-a _ o f(x)—f(a) flx2)-f(a)
fl) = @) < 5 (f) — f(@) soit=2 =72 < =2

Donc g, (x;) < g4(x,) ce qui indique que g, est croissante.
Type equation here.

Lemme2 : Soient a, x, y et b quatre réels rangés dans un ordre strictement
f&)-f@ . fO-r®
x—a - y-b

croissant. f convexe implique

Nous avons vu d’aprés le lemme1 que g, est croissante.

a <ydonc g,(a) < g,(y)
gy est croissante donc g, (x) < g,(b)

Remarquons que g,(y) = % = g,(x)

Il vient g,.(a) < g,() = g, (x) < g, (b)

Revenons a la démonstration principale ( si f convexe alors f' croissante )
Nous avons poura <x <y <b g,(a) < g,(b) (%)

Remarquons que f'(a) = liquaw = lim g,(a)
- x—a

A ’ _ 1 f-f®) _ .
De méme f'(b) = hmy_,byT = y_r)r; 9y(b)

En faisant donc tendre x vers a et y vers b dans () il vient f'(a) < f'(b), nous avons donc montré que f' est
croissante.

Montrons 2 - 3

Il s’agit de montrer que si f’ est croissante, alors la courbe de f est au-dessus de ses tangentes.

La tangente au point x = a a pour équation y = f'(a)(x — a) + f(a)

Construisons la fonction ¢ définie par ¢(x) = f(x) — [f'(@)(x —a) + f(a)] = f(x) — f'(a)(x — a) — f(a)

¢'(x) = f'(x) — f'(a). f' étant croissante ¢’ sera négative pour x < a et positive sinon.

¢ sera donc décroissante lorsque x < a et croissante sinon. (dresser un tableau de variations pour plus de lisibilité)
¢ admet donc un minimum en x = a. Ce minimum vaut ¢(a) = f(a) — f'(a)(a—a) — f(a) =0

Donc ¢ est positive au voisinage de a ce qui signifie f(x) = f'(a)(x — a) + f(a) soit f est au-dessus de sa tangente.

Montrons 3 - 2

Il s’agit de montrer que si f est au-dessus de ses tangentes alors f convexe.

Prenons deux réels a et b avec a < b.

L’équation de la tangente au point a a pour équation y = f'(a)(x — a) + f(a)

f est au-dessus de ses tangentes sur un intervalle I doncvx € I f(x) = f'(a)(x — a) + f(a)

I f(x)-f(a)
Pourx = a f'(a) < ~ca)

L’équation de la tangente au point b a pour équation y = f'(b)(x — b) + f(b)
f est au-dessus de ses tangentes sur un intervalle I donc vx € I f(x) = f'(b)(x — b) + f(b)

' FC)-f(b)
Pourx < b f'(b) = “n)

Le lemme1 précédent nous indique que

f)-f(a) _ f&)-f(b) . ’ f)-fl@) _ fx)-f(b) ’
o S oy - Wvientfl(a) S === < == = < f(b)




Nous avons donc montré que f’ est croissante.

Nous avons donc montré 1 & 2 < 3

Ces équivalences permettent de trouver beaucoup d’'inégalités.
¢ Prenons la fonction In définie sur R**.vx € R*™*(In)"(x) = —xiz. La dérivée seconde étant
négative, nous en déduisons que la fonction est concave. Donc
Vx,y €eRY, VA€ [0;1] In((1 —Dx+Ay) = (1 — ) In(x) + Alny

Pour/1=§Vx,y € R** ln(%)z @+¥2 In (xy)

*  Prenons la fonction exp définie sur R.Vx € R-(exp)”(x) = — exp(x). La dérivée seconde
étant positive, nous en déduisons que la fonction est convexe.

Donc Vx,y € R**, VA€ [0;1] e(=Px+¥) < (1 — D)e* + Ae¥

Exemples 1 1
Posons p et g tels que 5= A et; =(1-2)
Xy x y Ina  Inb lna Inb
Il vient e(P+q) < %+%. Posons x = lna et y = Inb. |l vient e( P a ) < - + ET
1 1
Inay (inb 1 Inb (1 5)<lb5) 11
Soite(p)e(q)se:a+% el e\ S§+§(=>aqu s§+§<:> %Ws§+§
* Reprenons la fonction In. Cette fonction étant concave la fonction est en dessous de ses
tangentes. La tangente au point a est donnée par I'équation y = f'(a)(x — a) + f(a)
Il vient Vx € R** Inx < i(x —a) +1n (a)
3
Soit I un intervalle et f une fonction définie sur I. Soit
g et a € I mais n’est pas une borne de I. On dit que a est un 2
Définition. S . o . .
s point d’inflexion de f s'il existe un réel r et un réel s tels
Théoréme
que f convexe sur [r,a] et f concave sur [a,s] (ou le :
contraire)
/o 1 2 3 N4
* Si f est deux fois dérivable alors il revient au méme de dire que la fonction f" s’annule en
changeant de signe en a.

Remarques * Surla zone de concavité la courbe est au-dessus de ses tangentes. Sur la zone de convexité
la courbe est au-dessous de ses tangentes. En x = a la tangente traverse la courbe. (voire
courbe ci-dessus)

L’exemple le plus classique est la fonction f:x — x3. f'(x) = 3x2.f"(x) = 6x ]
Exemple La dérivée seconde est donc négative sur R~ et positive sur R*. Elle

s’annule en changeant de signe en x = 0. 0 est donc bien un point
d’inflexion de la fonction.




