maths-prepa-sv.fr / mpsi

Matrices

Soit D une matrice diagonale de dimension n ne comportant aucun zéro sur sa diagonale.

Dans ce chapitre la lettre $\mathbb K$ désignera indifféremment $\mathbb R$ ou $\mathbb C$. Les lettres n et p désignent des entiers naturels.

Propriété

 $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ \dots & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix} \text{ avec } \lambda_1 \lambda_2 \dots \lambda_n \neq 0. \text{ Alors } D \text{ est inversible et } D^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \dots & 0 \\ \dots & \frac{1}{\lambda_2} & 0 & 0 \\ 0 & 0 & \frac{1}{\lambda_3} & 0 \\ 0 & 0 & 0 & \frac{1}{\lambda} \end{pmatrix}$

Preuve

Il suffit de vérifier que $DD^{-1}=D^{-1}D=I_n$. C'est immédiat.

Propriété

Une matrice triangulaire est symétrique si et seulement si les coefficients sur sa diagonale sont tous non nuls.

Preuve

Soit T une matrice triangulaire supérieure. $T = ((t_{i,j}))$ avec $t_{i,j} = 0$ pour i > j Nous noterons C_i la $i - i \ge me$ colonne d'une telle matrice.

Nous savons que si nous arrivons à la suite d'opérations élémentaires sur les colonnes de T à transformer T en la matrice identité, cela signifiera que T est inversible (voire le chapitre lien : inversibilité-système linéaire). Les mêmes opérations sur la matrice identité nous donneront son inverse T^{-1} . Par contre si, suite à diverses opérations élémentaires sur T, nous tombons sur une matrice non inversible, cela signifiera que T n'est pas inversible.

Appliquons l'algorithme suivant :

- Si $t_{1,1}=0$ la première colonne est nulle. T n'est pas inversible. Par contre si $t_{1,1}\neq 0$ réalisons $C_1\leftarrow \left(\frac{1}{t_{1,1}}\right)C_1$ (la première colonne ne comporte qu'un 1 sur la première position). Appliquons ensuite à toutes les C_j (j>1): $C_j\leftarrow C_j-t_{1,j}C_1$. Nous avons ainsi sur la première ligne un 1 et n-1 zéros. Les mêmes opérations sur la matrice identité amènent une prenière ligne commencant par un terme valant $\frac{1}{t_{1,1}}$ suivi de (n-1) termes potentiellement non nuls.
- Si $t_{2,2}=0$ la deuxième colonne est nulle. T n'est pas inversible. Par contre si $t_{2,2}\neq 0$ réalisons $C_2 \leftarrow \left(\frac{1}{t_{2,2}}\right) C_2$ (la deuxième colonne ne comporte qu'un 1 sur la deuxième position). Appliquons ensuite à toutes les C_j (j>2): $C_j \leftarrow C_j t_{2,j}C_2$. Nous avons ainsi sur la deuxième ligne un 0, un 1 et n-2 zéros. Les mêmes opérations sur la matrice identité amènent une deuxième ligne commencant par un 0, puis un terme valant $\frac{1}{t_{2,2}}$ suivi de (n-2) termes potentiellement non nuls.

.

• Si $t_{i,i} = 0$ la $i - i \grave{e} me$ colonne est nulle. T n'est pas inversible.

Par contre si $t_{i,i} \neq 0$ réalisons $C_i \leftarrow \left(\frac{1}{t_{i,i}}\right) C_i$ (la $i-i\`eme$ colonne ne comporte qu'un 1 sur la $i-i\`eme$ position). Appliquons ensuite à toutes les C_j (j>i): $C_j \leftarrow C_j - t_{i,j} C_i$. Nous avons ainsi sur la $i-i\`eme$ ligne i-1 zéros, un 1 et n-i zéros. Les mêmes opérations sur la matrice identité amènent une $i-i\`eme$ ligne commencant par i-1 zéros, puis un terme valant $\frac{1}{t_{i,i}}$ suivi de (n-i) termes potentiellement non nuls.

En réitérant cet algorithme jusqu'à la dernière colonne nous réussissons (si tous les coefficients diagonaux sont non nuls) à transformer la matrice T en la matrice identité. Nous en déduisons son inversibilité. Par contre si un des coefficients diagonaux est nul nous avons mis en évidence que la matrice T n'était pas inversible. Nous en déduisons que l'inversibilité de T entraine la non nullité de tous ses éléments diagonaux.

Nous avons bien *T* inversible si et seulement si tous ses éléments diagonaux sont non nuls.

Dans le cas où tous les coefficients diagonaux de T sont non nuls, la série d'opérations élémentaires appliquée à la matrice Indentité l'a transformé en une matrice triangulaire supérieure dont les termes diagonaux sont égaux à $\frac{1}{t_{1,1}}, \frac{1}{t_{2,2}} \dots \frac{1}{t_{i,i}}$. Il s'agit de T^{-1} .

Dans le cas d'une matrice triangulaire inférieure nous aurions appliqué le même algorithme mais cette fois sur les lignes de *T*

Remarque

Soit T une matrice triangulaire dont les termes diagonaux sont non nuls. Le système TX = Y où X et Y sont des vecteurs colonnes de dimension n est un système de Cramer. (En effet : T est inversible)