maths-prepa-sv.fr / mpsi

Polynômes

Dans ce chapitre la lettre $\mathbb K$ désignera indifféremment $\mathbb R$ ou $\mathbb C$. Les lettres n et p désignent des entiers naturels.

Définition

- Soient A et B deux polynômes de $\mathbb{K}[X]$. On dit que A et B sont premiers entre eux ssi ils n'ont pas d'autre diviseur commun que le polynôme scalaire. On note A et B premiers entre eux ssi $A \wedge B = 1$
- Soient $A_1, A_2, ... A_n$ n polynômes de $\mathbb{K}[X]$ tous non nuls.
 - o $A_1, A_2, ... A_n$ sont dits premiers entre eux dans leur ensemble ssi $A_1 \land A_2 \land ... A_n = 1$
 - o $A_1, A_2, ... A_n$ sont dits premiers entre eux deux à deux ssi $\forall (i,j)$ avec $i \neq j$ $A_i \land A_j = 1$

Théorème

C'est le théorème de Bezout. Soient A et B deux polynômes de $\mathbb{K}[X]$

 $A \land B = 1$ ssi $\exists (U, V) \in (\mathbb{K}[X])^2$ tels que UA + VB = 1

Preuve

Nous avons vu d'après la relation de Bezout que si $\exists (U,V) \in (\mathbb{K}[X])^2$ tels que $UA + VB = A \land B$

Donc si $A \land B = 1$ nous avons bien l'existence de U et V tels que UA + VB = 1

Réciproquement supposons qu'il existe U et V tels que UA + VB = 1

Soit D un diviseur commun de A et de B nous avons A = DR et B = DS. La relation UA + VB = 1

nous donne donc $UDR + VDS = 1 \Rightarrow D(UR + VS) = 1$ donc D divise 1 ce qui implique deg(D) = 0.

Nous avons bien $A \land B = 1$

Théorème

Ce théorème est généralisable dans le cas de n polynômes.

Soient $A_1, A_2, ... A_n$ n polynômes de $\mathbb{K}[X]$ tous non nuls.

 $A_1 \land A_2 \land \dots A_n = 1 \text{ } ssi \exists (U_1, U_2, \dots U_n) \in (\mathbb{K}[X])^n \text{ } tels \text{ } que \text{ } U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + U_2 A_2 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A_n = 1 \text{ } tels \text{ } que \text{ } u \in U_1 A_1 + \dots U_n A$

Preuve

Là encore la relation de Bezout nous donne un sens du théorème.

Nous savons que $\exists (U_1, U_2, ... U_n) \in (\mathbb{K}[X])^n$ tels que $U_1A_1 + U_2A_2 + \cdots U_nA_n = A_1 \land A_2 \land ... A_n$

Donc si $A_1 \land A_2 \land \dots A_n = 1$ nous avons bien l'existence de $(U_1, U_2, \dots U_n)$ tels que $U_1 A_1 + U_2 A_2 + \dots + U_n A_n = 1$

Réciproquement. Supposons qu'il existe $(U_1, U_2, \dots U_n)$ dans $(\mathbb{K}[X])^n$ tels que $U_1A_1 + U_2A_2 + \dots U_nA_n = 1$

Soit D un diviseur commun de $A_1,A_2,...A_n$. $A_1=DP_1,A_2=DP_2,...A_n=DP_n$ Donc $U_1A_1+U_2A_2+\cdots U_nA_n=1\Rightarrow U_1DP_1+U_2DP_2+\cdots U_nDP_n=1\Rightarrow D$ divise 1.

Donc deg(D) = 0. Nous avons bien $A_1 \wedge A_2 \wedge ... A_n = 1$

Propriété

Soient A et B deux polynômes de $\mathbb{K}[X]$.

$$\frac{A}{A \wedge B} \wedge \frac{B}{A \wedge B} = 1$$

Preuve

Supposons $\frac{A}{A \wedge B} \wedge \frac{B}{A \wedge B} = C$ avec $\deg(C) > 0$. Nous aurions $C \mid \frac{A}{A \wedge B}$ et $C \mid \frac{B}{A \wedge B}$ donc $CA \wedge B$ serait un diviseur commun de Aet de B ce qui rentre en considération avec le fait que $A \land B$ est un diviseur commun de A et de B de degré maximal.

Propriété

La propriété précédente est généralisable dans le cas de *n* polynômes.

Soient
$$A_1,A_2,...A_n$$
 n polynômes de $\mathbb{K}[X]$ tous non nuls.
$$\frac{A_1}{A_1 \wedge A_2 ... \wedge A_n} \wedge \frac{A_2}{A_1 \wedge A_2 ... \wedge A_n} ... \wedge \frac{A_n}{A_1 \wedge A_2 ... \wedge A_n} ... = 1$$

Preuve

C'est la même preuve que dans le cas n=2

Théorème

C'est le théorème de Gauss appliqué aux polynômes.

Soient A, B et C trois polynômes de $\mathbb{K}[X]$

On suppose $A \mid BC$ et $A \land B = 1$ alors $A \mid C$

Preuve

Si $A \land B = 1$ le théorème de Bezout nous donne l'existence de U et V dans $\mathbb{K}[X]$ tels que

$$UA + BV = 1 \Rightarrow UAC + VBC = C$$

Or $A \mid BC$ donc BC = AD avec $D \in \mathbb{K}[X]$

Nous avons donc $UAC + VAD = C \Rightarrow A(UC + VD) = C \Rightarrow A|C$

Remarque

Bien entendu, de la même manière que dans \mathbb{N} il existe des nombres premiers, il existe aussi dans $\mathbb{K}[X]$ des polynômes premiers. Ces polynômes ne dont divisibles que par un polynôme scalaire ou eux même. Nous verrons dans le chapitre dédíé aux polynomes scindés sur C et sur R que ces polynomes sont dans $\mathbb{C}[X]$ exactement les polynômes de degré 1, alors que dans $\mathbb{R}[X]$ ce sont les polynômes de degré 1 et les polynômes de degré 2 dont le discriminant est négatif.

_				,		,
D	ro	n	rı	Δ	н	Δ

Soit $A \in \mathbb{K}[X]$ et P premier dans $\mathbb{K}[X]$ de degré non nul. $A \land P = 1$ ssi $P \nmid A$

Preuve

Si $A \wedge P = 1$, le théorème de Bezout nous donne l'existence de U et V dans $\mathbb{K}[X]$ tels que :

$$UA + PV = 1$$

Supposons P|A nous avons A = PP'. Il vient $UPP' + PV = 1 \Rightarrow P(UP' + V) = 1 \Rightarrow P|1$. Nous sommes donc arrivés à une contradiction.

Si $P \nmid A$ alors $A \land P = 1$. En effet les seuls diviseurs communs de A et de P ne peuvent être que les polynômes scalaires.

Propriété

Soit P premier dans $\mathbb{K}[X]$ de degré non nul. Soient A et B deux polynômes de $\mathbb{K}[X]$

 $P|AB \Rightarrow P|A \text{ ou } P|B$

Par l'absurde : Supposons $P \nmid A$ et $P \nmid B$ alors d'après la propriété précédente nous avons $A \land P = 1$ et $B \land P = 1$. Donc $\exists (U, V)$ et (U', V') tels que AU + VP = 1 et BU' + PV' = 1

Multiplions ces deux égalités. Il vient (AU + VP)(BU' + PV') = 1

 $ABUU' + AUPV' + VPBU' + VP^2V' = 1 \Rightarrow ABUU' + P(AUV' + VBU' + VV'P) = 1 \Rightarrow AB \land P = 1$ D'après le théorème de Bezout. Or d'après la propriété précédente cela implique $P \nmid AB$ ce qui est contraire à l'hypothèse de départ. Nous sommes donc arrivés à une contradiction.

Preuve

Partons de $P \mid AB$ et supposons par l'absurde que $P \nmid A$ et $P \nmid B$. D'après la propriété précédente nous avons $A \land P = 1$ et $B \land P = 1$. Donc $\exists (U, V)$ et (U', V') tels que AU + VP = 1 et BU' + PV' = 1

Multiplions ces deux égalités. Il vient (AU + VP)(BU' + PV') = 1

 $ABUU' + AUPV' + VPBU' + VP^2V' = 1 \Rightarrow ABUU' + P(AUV' + VBU' + VV'P) = 1 \Rightarrow AB \land P = 1$

D'après le théorème de Bezout. Or d'après la propriété précédente cela implique $P \nmid AB$ ce qui est contraire à l'hypothèse de départ. Nous sommes donc arrivés à une contradiction et $P \mid A$ ou $P \mid B$