maths-prepa-sv.fr / mpsi

Equivalents				
Définition	Soit E une partie quelconque de $\mathbb R$ et soit a un point adhérent à E . La définition de la négligeabilité peut se décliner de deux manières selon si l'on est dans le monde continu ou le monde discret. Soient f et g deux fonctions définies sur E . On dit que f est équivalente par rapport à g au voisinage de g lorsque g au voisinage de g au voisinage de g au voisinage de g au voisinage de g			
Exemple	Soit $P(x) = x^3 - x^2$. On a $P(x) \sim x^3$ au voisinage de $+\infty$. En effet $x^2 = o(x^3)$. Donc $P(x) = x^3 + o(x^3)$			
Remarque	Reprenons le cadre de la définition précédente. Dans le cas où la fonction g ne s'annulle pas au voisinage de a nous avons $f \sim g$ ssi $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$. En effet $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$ ssi $\frac{f}{g} = 1 + o(1)$ ssi $f = g + o(g)$			
Définition	La notion d'équivalent existe aussi dans le monde discret. Soient $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ deux suites réelles définies sur \mathbb{N} . On dit que $(U_n)_{n\in\mathbb{N}}$ est équivalente à $(V_n)_{n\in\mathbb{N}}$ et on note $U_n \sim V_n$ ssi $U_n - V_n = o(V_n)$			
Exemple	Soit $U_n=n^3-n^2$. On a $U_n\sim n^3$ pour les mêmes raisons explicitées plus haut.			
Propriété	La relation ~ est une relation d'équivalence.			

Preuve

- Elle est reflexive. $U_n \sim U_n$. En effet $U_n U_n = o(U_n)$
- $$\begin{split} \bullet \quad & \text{Elle est symétrique. } \boldsymbol{U_n} \sim \boldsymbol{V_n} \Rightarrow \boldsymbol{U_n} \boldsymbol{V_n} = \ o(\boldsymbol{V_n}) \Rightarrow \boldsymbol{U_n} \boldsymbol{V_n} = \varepsilon_n \boldsymbol{V_n} \ \text{avec} \ \lim_{n \to +\infty} \varepsilon_n = 0 \Rightarrow \boldsymbol{U_n} = \boldsymbol{V_n} (1 + \varepsilon_n) \Rightarrow \boldsymbol{V_n} = \frac{\boldsymbol{U_n}}{1 + \varepsilon_n} \\ & \text{Or} \ \frac{1}{1 + \varepsilon_n} = 1 \varepsilon_n + o(\varepsilon_n). \ \text{En effet} \ \frac{1}{1 + \varepsilon_n} (1 \varepsilon_n) = \frac{1}{1 + \varepsilon_n} \frac{(1 \varepsilon_n)(1 + \varepsilon_n)}{1 + \varepsilon_n} = \frac{1 (1 \varepsilon_n^2)}{1 + \varepsilon_n} = \frac{\varepsilon_n^2}{1 + \varepsilon_n} = \varepsilon_n (\frac{\varepsilon_n}{1 + \varepsilon_n}) \ \text{avec} \\ & \lim_{n \to +\infty} \frac{\varepsilon_n}{1 + \varepsilon_n} = 0. \ \text{Donc} \ \boldsymbol{V_n} = \boldsymbol{U_n} \big(1 \varepsilon_n + o(\varepsilon_n)\big) = \boldsymbol{U_n} \varepsilon_n \boldsymbol{U_n} + o(\boldsymbol{U_n} \varepsilon_n). \ \text{Or} \ o(\boldsymbol{U_n} \varepsilon_n) = o(\boldsymbol{U_n}) \ \text{car} \ \varepsilon_n \to 0 \\ & \text{Donc} \ \boldsymbol{V_n} = \boldsymbol{U_n} \varepsilon_n \boldsymbol{U_n} + o(\boldsymbol{U_n}) \Rightarrow \boldsymbol{V_n} \boldsymbol{U_n} = -\varepsilon_n \boldsymbol{U_n} + o(\boldsymbol{U_n}) \Rightarrow \boldsymbol{V_n} \boldsymbol{U_n} = o(\boldsymbol{U_n}) \Rightarrow \boldsymbol{V_n} \sim \boldsymbol{U_n} \end{split}$$
- Elle est transitive. $U_n \sim V_n \Rightarrow U_n V_n = o(V_n)$. $V_n \sim W_n \Rightarrow V_n W_n = o(W_n)$ Donc $U_n = V_n + o(V_n) \Rightarrow U_n - V_n = \varepsilon_n V_n \Rightarrow U_n = (1 + \varepsilon_n) V_n$. $V_n = (1 + \varepsilon_n') W_n$ donc $U_n = (1 + \varepsilon_n)(1 + \varepsilon_n') W_n = W_n + W_n (\varepsilon + \varepsilon_n' + \varepsilon_n' \varepsilon_n)$. Donc $U_n \sim W_n$ car $\lim_{n \to +\infty} (\varepsilon_n + \varepsilon_n' + \varepsilon_n' \varepsilon_n) = 0$

			** *
Propriété	Soit $(U_n)_{n\in\mathbb{N}}$ une suite réelle.	$U_n = l \ (avec \ l \neq 0) \Leftrightarrow U_n \sim$	$l (avec l \neq 0)$

Preuve

$$\lim_{n \to +\infty} U_n = l \Leftrightarrow U_n - l = o(1) \Leftrightarrow U_n - l = o(l) (car \ l \neq 0) \Leftrightarrow U_n \sim l$$

Remarque	La notion d'équivalent et de limite coincident donc pour une suite lorsque la limite est réelle et non nulle.

	Equivalents en 0				
Propriétés	$\ln\left(1+x\right) \sim x$	$e^x - 1 \sim x$	$\sin x \sim x$	$\tan x \sim x$	

Preuve

- Soit $\varphi(x) = \ln(1+x) \cdot \varphi'(0) = 1$. Donc $\lim_{x \to 0} \frac{\ln(1+x) \ln 1}{x} = 1 \Rightarrow \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \Rightarrow \ln(1+x) \sim x$
- Soit $\varphi(x) = e^x$. $\varphi'(0) = 1$. Donc $\lim_{x \to 0} \frac{e^x e^0}{x} = 1 \Rightarrow e^x 1 \sim x$
- Soit $\varphi(x) = \sin x$. $\varphi'(0) = 1$ Donc $\lim_{x \to 0} \frac{\sin x \sin 0}{x} = 1 \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1 \Rightarrow \sin x \sim x$
- Soit $\varphi(x) = \tan x$. $\varphi'(0) = 1$. Donc $\lim_{x \to 0} \frac{\tan x \tan 0}{x} = 1 \Rightarrow \lim_{x \to 0} \frac{\tan x}{x} = 1 \Rightarrow \tan x \sim x$

Soient f, g, h, i quatre fonctions définies sur un ensemble E. Soit $a \in \overline{E}$ et au voisinage de $a : f \sim g$ et $h \sim i$

Propriétés

- Alors $fh \sim gi$
- Si f et g ne s'annullent pas dans un voisinage de a alors $\frac{1}{f} \sim \frac{1}{g}$
- Si g>0 dans un voisinage de a alors f>0 dans un voisinage de a
- Si g est strictement positive au voisinage de a alors $f^{\alpha} \sim g^{\alpha}$ pour tout α réel.
- Soit $b \in \mathbb{R}$. Soit φ tel que $\lim_{x \to a} \varphi(x) = a$. Alors au voisinage de $b : f \circ \varphi \sim g \circ \varphi$
- Soient (u_n) et (v_n) deux suites telles que $u_n \sim v_n$ et φ une fonctions strictement croissante de $\mathbb N$ dans \mathbb{N} . Alors $u_{\varphi(n)} \sim v_{\varphi(n)}$

Preuve

- $f \sim g \Rightarrow f = g + o(g)$. $h \sim i \Rightarrow h = i + o(i)$; fh = (g + o(g))(i + o(i)) = gi + io(g) + go(i) + o(g)o(i) = gi + io(g)o(gi) + o(gi) + o(gi) = gi + o(gi)
- $\frac{\dot{\bar{f}}}{\frac{1}{a}} = \frac{g}{f}$. Or : $f \sim g \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 1 \Rightarrow \lim_{x \to a} \frac{g(x)}{f(x)} = 1 \Rightarrow \frac{1}{f} \sim \frac{1}{g}$
- $f = \frac{f}{g} * g. \lim_{x \to a} \frac{f(x)}{g(x)} = 1$ donc $\forall \varepsilon > 0$ $\exists V_a$ tel que $\forall x \in V_a$ $\frac{f(x)}{g(x)} > 1 \varepsilon$ (avec ε aussi petit que désiré) . g > 0 dans un voisinage de a donc $\exists V_a'$ tel que $\forall x \in V_a'$ g(x) > 0. Il vient $\forall x \in V_a' \cap V_a$ f(x) > 0• $\frac{f^a}{g^a} = \left(\frac{f}{g}\right)^a$. Nous savons que $\exists V_a$ tel que $\forall x \in V_a$, f(x) > 0 et g(x) > 0

$$\forall x \in V_a \left(\frac{f}{g}\right)^{\alpha} = e^{\alpha \ln \left(\frac{f}{g}\right)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1 \Rightarrow \lim_{x \to a} \ln(\frac{f(x)}{g(x)}) = 0 \Rightarrow \lim_{x \to a} e^{\alpha \ln(\frac{f(x)}{g(x)})} = 1. \text{ Donc } \lim_{x \to a} \frac{f^{\alpha}}{g^{\alpha}} = 1 \Rightarrow f^{\alpha} \sim g^{\alpha}$$
 Au voisinage de $a: f \sim g$ donc $f - g = \varepsilon g$ avec $\lim_{x \to a} \varepsilon(x) = 0$

$$fo\,\varphi-go\varphi=(\varepsilon o\varphi)(go\varphi)$$

Nous avons $\lim_{x\to b} \varphi(x) = a$ et $\lim_{x\to a} \varepsilon(x) = 0$ donc $\lim_{x\to b} \varepsilon(\varphi(x)) = 0$. Donc au voisinage de b $f \circ \varphi \sim g \circ \varphi$

 $u_n \sim v_n \Rightarrow u_n - v_n = \varepsilon_n v_n$ avec $\lim_{n \to +\infty} \varepsilon_n = 0$. Donc $u_{\varphi(n)} - v_{\varphi(n)} = \varepsilon_{\varphi(n)} v_{\varphi(n)}$ φ étant strictement croissante et à valeurs dans $\mathbb N$ nous avons $\forall n \in \mathbb N$ $\varphi(n) \geq n$ (simple démonstration par récurrence)

$$\lim_{n \to +\infty} \varepsilon_n = 0 \Rightarrow \forall \varepsilon > 0 \; \exists N_0 \; tel \; que \; \forall n \geq N_0 \; |\varepsilon_n| < \varepsilon$$

 $\text{Or si } \forall n \geq N_0 \ |\varepsilon_n| < \varepsilon \text{ alors } \forall n \geq N_0 \ \left|\varepsilon_{\phi(n)}\right| < \varepsilon \ \left(\text{car } \phi(n) \geq n\right) \ \text{donc } \lim_{n \rightarrow +\infty} \varepsilon_{\phi(n)} = 0 \Rightarrow u_{\phi(n)} \sim v_{\phi(n)}$

Propriété

Soient f, g, h trois fonctions définies sur un ensemble E vérifiant $\forall x \in E$ $f(x) \leq g(x) \leq h(x)$ Soit $a \in \overline{E}$ et au voisinage de $a : f \sim h$ alors $: g \sim f$

Preuve

$$f \sim h \Rightarrow h(x) = f(x) + \varepsilon(x)f(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$;

Nous remarquerons que l'inégalité $f(x) \le h(x)$ implique que $\forall x \in E, \varepsilon(x) f(x) \ge 0$. Nous avons donc $\forall x \in E \ f(x) \le g(x) \le f(x) + \varepsilon(x) f(x) \Rightarrow 0 \le g(x) - f(x) \le \varepsilon(x) f(x) \ (*)$

Posons g(x) - f(x) = a(x)f(x)

Dans le cas où f(x) = 0 nous avons g(x) - f(x) = 0 et nous pouvons poser a(x) = 0

Dans le cas où $f(x) \neq 0$ nous avons $a(x) = \frac{g(x) - f(x)}{f(x)}$

De (*) nous déduisons $0 \le a(x)f(x) \le \varepsilon(x)f(x)$ donc $|a(x)f(x)| \le |\varepsilon(x)f(x)| \Rightarrow |a(x)| \le |\varepsilon(x)|$

Comme nous savons que $\lim_{x\to 0} \varepsilon(x) = 0$ nous avons aussi $\lim_{x\to 0} a(x) = 0$ ce qui implique $g - f = o(f) \Rightarrow g = f + o(f)$

Remarques

- Dès propriétés précédentes nous retenons que les équivalents sont compatibles avec la multiplication et la composition à droite. Attention toutefois à ne pas additionner deux équivalents. Cela n'a aucun sens
 - Exemple si $f(x) = x^3 + x$ et $g(x) = -x^3$

Nous avons en $+ \propto f(x) \sim x^3$ et $g(x) \sim -x^3$. Par contre $f + g \sim x$ (difficile de le prévoir juste en additionnant les équivalents précédents)

Une fiche entière de calculs d'équivalents est fournie dans ce chapitre. Je vous y donne rendez vous.