maths-prepa-sv.fr / mpsi

Détermination d'une application linéaire		
Définition	Soit E un \mathbb{K} — ev. Soit $(e_i)_{i \in I}$ une base de E . Soit $i \in I$. L'application qui à tout x de E associe sa i —ième coordonnée est appelée la i —ième forme coordonnée de E et est notée $e_i^*(x)$. Par définition nous avons donc si $x \in E$, $x = \sum_{i \in I} e_i^*(x) e_i$	
Exemple	Soit dans \mathbb{R}^3 muni d'une base (e_1, e_2, e_3) le vecteur $x = e_1 - 2e_2 + 3e_3$. Nous avons $e_1^*(x) = 1$; $e_2^*(x) = -2$; $e_3^*(x) = +3$; Nous avons donc bien $x = e_1^*(x)e_1 + e_2^*(x)e_2 + e_3^*(x)e_3$	
Propriété	Les fornes coordonnées sont des formes linéaires, c'est-à-dire des applications linéaires de $\it E$ dans $\it K$.	
Preuve		

Soient x et y deux vecteurs de $E.x = \sum_{i \in I} x_i \ e_i$ et $y = \sum_{i \in I} y_i \ e_i$ $\forall (\lambda, \mu) \in \mathbb{K}^2 \ \lambda x + \mu y = \lambda \sum_{i \in I} x_i \ e_i + \mu \sum_{i \in I} y_i \ e_i = \sum_{i \in I} (\lambda x_i + \mu y_i) \ e_i$ Donc $\forall i \in I, e_i^*(\lambda x + \mu y) = \lambda x_i + \mu y_i = \lambda e_i^*(x) + \mu e_i^*(y)$ donc e_i^* est linéaire.

Théorème

Soient E et F deux \mathbb{K} – ev. Soit $(e_i)_{i \in I}$ une base de E. Soit $(g_i)_{i \in I}$ une famille de F.

Alors II existe une seule application linéaire f telle que $\forall i \in I, f(e_i) = g_i$.

En d'autres termes une application linéaire est entièrement déterminée par les valeurs qu'elle prend sur une base d'espace vectoriel.

Preuve

Il en existe une. Soit $f: \begin{cases} E \to F \\ x \to \sum_{i \in I} e_i^*(x) \ g_i \end{cases}$. Nous savons que les e_i^* sont linéaires donc f aussi. Soit $j \in I$. $f(e_j) = \sum_{i \in I} e_i^*(e_j) \ g_i = g_j \operatorname{car} \begin{cases} e_i^*(e_j) = 0 \ pour \ j \neq i \\ e_i^*(e_j) = 1 \ pour \ j = i \end{cases}$.

Soit
$$j \in I$$
. $f(e_j) = \sum_{i \in I} e_i^*(e_j) g_i = g_j \operatorname{car} \begin{cases} e_i^*(e_j) = 0 \ pour \ j \neq i \\ e_i^*(e_i) = 1 \ pour \ j = i \end{cases}$.

Nous avons donc trouvé l'oiseau rare. Peut il en exister plus d'une ?

Soient f et g deux applications telles que $\forall i \in I, f(e_i) = g(e_i) = g_i$.

Nous avons $\forall i \in I$, $(f - g)(e_i) = 0$.

Soit $x \in E$. $(f - g)(x) = (f - g)(\sum_{i \in I} e_i^*(x) e_i) = \sum_{i \in I} e_i^*(x) (f - g)(e_i) = 0$. Donc f - g est l'application identiquement nulle. Donc f = g.

Définition	Deux espaces vectoriels sont dits isomorphes ssi il existe un isomorphisme de l'un vers l'autre.
Exemple	Soit $E = \mathbb{R}^2$ un \mathbb{R} ev. Soit $F = \mathbb{C}$ un \mathbb{R} ev. Soit $\varphi : \left\{ \begin{array}{c} E \to F \\ (x,y) \to x + iy \end{array} \right\}$. φ est linéaire et injective (le vérifier). φ est donc un isomorphisme. E et F sont isomorphes.
Théorème	Deux espaces vectoriels de même dimension finie sont isomorphes.

Preuve

Soient E et F deux \mathbb{K} – ev de dimension finie.

Soit $B = (e_i)_{i \in I}$ une base de E.

Soit $B' = (f_i)_{i \in I}$ une base de F.

Nous avons vu d'après le théorème précédent qu'il existe une seule application linéaire f telle que $\forall i \in I$, $f(e_i) = f_i$.

 $\dim(Im(f)) = \dim(Vect(f_i)_{i \in I}) = \dim(B') = \dim(F)$. Donc Im(f) sev de F est égal à F. f est donc surjective.

 $\dim(E) = \dim(F)$ donc d'après une propriété vue précédemment f bijective $\Rightarrow f$ isomorphisme.

Nous en déduisons que E et F sont isomorphes.

Propriété

Soient E et F deux \mathbb{K} – ev de même dimension finie. Soit f une application linéaire de E dans F alors : f inversible à gauche $\Leftrightarrow f$ inversible à droite $\Leftrightarrow f$ bijective.

Soit f inversible à gauche. $\exists \varphi \in L(F, E)$ telle que φ o $f = Id_E$.

Soit $x \in Kerf$. $\varphi \circ f(x) = \varphi(0_F) = 0_E$. Mais $\varphi \circ f(x) = x$ donc $x = 0_E$. Il vient $Kerf = \{0_E\} \Rightarrow f$ injective $\Rightarrow f$ bijective (car dimensions finies) $\} \Rightarrow f$ surjective.

Soit f inversible à droite. $\exists \varphi \in L(F, E)$ telle que $f \circ \varphi = Id_F$.

Soit $y \in F$, $y = f \circ \varphi(y)$. Donc $y \in Imf$. Il vient f surjective $\Rightarrow f$ bijective (car dimensions finies) $\} \Rightarrow f$ injective.

Et bien entendu si *f* bijective alors *f* surjective et injective.

Propriété

Soient E et F deux \mathbb{K} – ev. Soient E_1 et E_2 deux sev de E en somme directe. C'est-à-dire $E=E_1\oplus E_2$ Soient $f_1 \in \mathcal{I}(E_1,F)$ et $f_2 \in \mathcal{I}(E_2,F)$. Alors il existe une seule application linéaire f qui coincide avec f_1 sur E_1 et avec f_2 sur E_2 .

Preuve

```
Construisons l'application f: \begin{cases} E \to F \\ x \to f_1(x_1) + f_2(x_2) \end{cases}. x_1 et x_2 étant les vecteurs résultant de la décomposition de x dans E_1 et E_2. Soient (\lambda,\mu) \in \mathbb{K}^2 et (x,y) \in E^2 f(\lambda x + \mu y) = f(\lambda (x_1 + x_2) + \mu (y_1 + y_2)) = f(\lambda x_1 + \mu y_1 + \lambda x_2 + \mu y_2) = f_1(\lambda x_1 + \mu y_1) + f_2(\lambda x_2 + \mu y_2) = \lambda [f_1(x_1) + f_2(x_2)] + \mu [f_1(y_1) + f_2(y_2)] = \lambda f(x) + \mu f(y) f est donc bien linéaire. Supposons qu'une autre application linéaire g coincide aussi avec f_1 sur E_1 et avec f_2 sur E_2. Alors \forall x \in E g(x) = g(x_1 + x_2) = g(x_1) + g(x_2) = f_1(x_1) + f_2(x_2) = f(x) f est donc bien l'unique application à vérifier ces propriétés.
```