maths-prepa-sv.fr / mpsi

Systèmes, matrices, applications linéaires.	
Remarque	Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. • L'ensemble S des solutions du système homogène $AX = 0_{\mathbb{K}^n}$ est un sous ensemble de \mathbb{K}^p et conincide avec $Ker(A)$. Nous avons donc $\dim(S) = \dim Ker(A)$ • Le théorème du rang nous donne $\dim(Im(A)) + \dim(Ker(A)) = p \Rightarrow rg(A) = p - \dim(S)$ • Le système non homogène $AX = B$ avec $B \in \mathcal{M}_{n,1}(\mathbb{K})$ n'admet de solutions que si $B \in Im(A)$
Prorpriété	L'ensemble des solutions d'un système non homogène du type $AX = B$ avec $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in Im(A)$ est un sous espace affine.
Preuve	
Soit S l'ensemble de solutions. Nous avons vu que si $B \notin Im(A)$ alors $S = \emptyset$ Si $B \in Im(A)$ alors $\exists X_0 \in \mathbb{K}^p$ tel que $AX_0 = B$ Soit X une solution du système. Nous avons $AX_0 = B$ et $AX = B$ Donc $A(X - X_0) = 0 \Rightarrow X - X_0 \in KerA$ Donc $S \subset X_0 + KerA$ Réciproquement si $X = X_0 + Y$ avec $Y \in KerA$ nous avons $AX = A(X_0 + Y) = AX_0 + AY = B + 0 = B$ Donc $X \in S$. Nous avons bien $S = X_0 + KerA$	
Exemple	Nous avons déjà vu dans le chapitre sur les espaces affines que les solutions du système :
Définition	Dans le cas où A est inversible le système $AX = B$ est dit système de Cramer.
Propriété	Un système de Cramer admet une solution unique.
Preuve	
	$AX = B \ ssi \ X = A^{-1}B$ Résoudre un système de Cramer en inversant une matrice n'est pas toujours la solution la plus aisée. Il est les fois plus confortable de faire les choses manuellement