maths-prepa-sv.fr / mpsi

Produit scalaire. Projeté orthogonal. Distance.			
Définition	Soit E un espace préhilbertien réel muni d'un produit scalaire noté $(. .)$. Soit F un sev de E de dimension finie. Soit x un vecteur de E . On appelle projeté orthogonal de x sur F que l'on note $p(x)$ la composante de x sur F dans la décomposition $E = F \oplus F^{\perp}$	$x-p_F(x)$ 0_E $p_F(x)$ $Projet\'e orthogonal de x \ sur \ F.$	
Théorème	Théorème Soit E un espace préhilbertien réel muni d'un produit scalaire noté $(. .)$. Soit E un E un E un E de E de dimension finie de base E soit E un vecteur de E . Le projeté orthogonal de E sur E que l'on note E un vecteur de E sur E que l'on note E le projeté orthogonal de E sur E que l'on note E le projeté orthogonal de E sur E que l'on note E le projeté orthogonal de E sur E que l'on note E le projeté orthogonal de E		
Prouvo			

Soit $x \in E$. Nous avons $x = \sum_{i=1}^p (f_i|x)f_i + x - \sum_{i=1}^p (f_i|x)f_i$ Nous pouvons remarquer que $\sum_{i=1}^p (f_i|x)f_i \in F$ et que $\forall j \in \llbracket 1,p \rrbracket \left(f_j|x - \sum_{i=1}^p (f_i|x)f_i\right) = \left(f_j|x\right) - \left(f_j|x\right) = 0$ Donc $x - \sum_{i=1}^p (f_i|x)f_i \in F^\perp$. Nous avons donc bien $p(x) = \sum_{i=1}^p (f_i|x)f_i$.

Remarque	Nous remarquons au passage que si $p(x) = \sum_{i=1}^{p} (f_i x)f_i$ est le projeté orthogonal sur F alors $x - p(x)$ est orthogonal à F .
Théorème	Plaçons nous dans un cas particulier. Soit E un espace euclidien. Soit H un hyperplan de E de dimension finie. Soit H un vecteur de H^{\perp} de norme 1 dit normal à H Le projeté orthogonal de H sur H que l'on note H 0 est égal à H 1 H 1 Le projeté orthogonal de H 2 sur H 3 que l'on note H 4 est égal à H 5 est égal à H 6 est égal à H 7 est égal à H 8 est égal à H 9 es

Preuve

Dans le cas d'un hyperplan il semblerait donc que pour projeter x sur H il soit plus rapide de le projeter d'abord sur H^{\perp} Remarquons d'abord que $\dim(H) = n - 1$ donc $\dim(H^{\perp}) = 1$

 H^{\perp} est donc une droite vectorielle portée par n'importe quel vecteur non nul. Soit n un de ces vecteurs que l'on aura prélablement normé.

Nous avons x = x - (x|n)n + (x|n)n. $(x|n)n \in H^{\perp}$ et (x - (x|n)n|n) = (x|n) - (x|n) = 0 donc $x - (x|n) \in H^{\perp \perp}$ soit HNous avons bien p(x) = x - (x|n)

Définition	Soit E un espace vectoriel préhibertien muni d'un produit scalaire noté $(. .)$. Soit F un sev de E Soit x un vecteur de E On appelle distance de x à F et on note $d(x,F) = inf x-y _{y \in F}$	
Théorème	Soit E un espace vectoriel préhibertien muni d'un produit scalaire noté $(. .)$. Soit E un E de dimension finie. Soit E un vecteur de E et soit E soit E soit E alors E	
Prouvo		

Remarquons que $\forall y \in F$ nous avons x - y = x - p(x) + p(x) - y

Nous avons déjà vu que $x - p(x) \in F^{\perp}$ et nous notons que $p(x) - y \in F$

Nous en déduisons d'après le théorème de Pythagore que

$$\forall y \in F \|x - y\|^2 \ge \|x - p(x)\|^2 + \|p(x) - y\|^2 \ge \|x - p(x)\|^2$$

If vient $\forall y \in F ||x - y|| \ge ||x - p(x)||$ Donc $\inf ||x - y||_{y \in F} \ge ||x - p(x)||$

Mais cette borne inf est atteinte pour y = p(x). Nous avons donc bien

$$d(x,F) = ||x - p(x)||$$

	Revenons dans le cas particulier précédent. Soit <i>E</i> un espace euclidien.	
Théorèm	Soit H un hyperplan de E de dimension finie. Soit n un vecteur de H^{\perp} de norme 1 dit normal à H	
	d(x,H) = x - (x n)n	
Preuve		

C'est la simple application du théorème précédent dans le cas où p(x) = (x|n)n