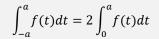
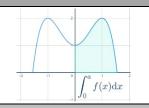
maths-prepa-sv.fr / mpsi

Propriété Intégrale Soit a un réel strictement positif

Soit f une continue par morceaux définie sur [-a, a] et à valeur dans \mathbb{C} .

Si f paire alors





Soit $(\varphi_n)_{n\in\mathbb{N}}$ est une suite de fonctions en escalier convergeant uniformément vers f sur [0,a]. Soit $(\psi_n)_{n\in\mathbb{N}}$ une suite de fonctions définie par $\forall t\in[0;a]$ $\psi_n(t)=\varphi_n(t)$ et $\forall t\in[-a;0]$ $\psi_n(t)=\varphi_n(-t)$ Nous avons donc construit ψ_n pour que ψ_n soit paire sur [-a, a]

f et ψ_n étant paires nous avons $\|\psi_n-f\|_{\infty,[-a,a]}=\|\psi_n-f\|_{\infty,[0,a]}=\|\varphi_n-f\|_{\infty,[0,a]}$ Donc il y a convergence uniforme de ψ_n vers f sur [-a, a]

Nous avons donc $\int_{-a}^{a} f(t)dt = \lim_{n \to +\infty} \int_{-a}^{a} \psi_n(t) dt$

Par construction et par définition, ψ_n étant une fonction en escalier, paire nous avons $\int_{-a}^{a} \psi_n(t) dt = 2 \int_{0}^{a} \psi_n(t) dt$ Nous avons donc $\int_{-a}^a f(t)dt = \lim_{n \to +\infty} 2 \int_0^a \psi_n(t) dt = \lim_{n \to +\infty} 2 \int_0^a \varphi_n(t) dt = 2 \int_0^a f(t) dt$

Propriété

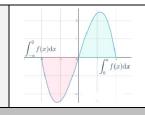
Propriété

Soit a un réel strictement positif

Soit f une continue par morceaux définie sur [-a, a] et à valeur dans \mathbb{C} .

Si f impaire alors

$$\int_{-a}^{a} f(t)dt = 0$$



Preuve

Soit $(\varphi_n)_{n\in\mathbb{N}}$ est une suite de fonctions en escalier définie sur [0,a] et convergeant uniformément vers f sur [0,a]. Soit $(\psi_n)_{n\in\mathbb{N}}$ une suite de fonctions définie sur [-a,a] par $\forall t\in[0;a]$ $\psi_n(t)=\varphi_n(t)$ et $\forall t\in[-a;0]$ $\psi_n(t)=-\varphi_n(-t)$ Nous avons donc construit ψ_n pour que ψ_n soit impaire sur [-a, a]

f et ψ_n étant impaires nous avons $\|\psi_n - f\|_{\infty,[-a,a]} = \|\psi_n - f\|_{\infty,[0,a]} = \|\varphi_n - f\|_{\infty,[0,a]}$ Donc il y a convergence uniforme de ψ_n vers f sur [-a,a]

Nous avons donc $\int_{-a}^{a} f(t)dt = \lim_{n \to +\infty} \int_{-a}^{a} \psi_n(t) dt$

Par construction et par définition, ψ_n étant une fonction en escalier, impaire nous avons $\int_{-a}^{a} \psi_n(t) dt = 0$ Nous avons donc $\int_{-a}^{a} f(t)dt = 0$

Propriété

Soint f une fonction continue par morceaux définie sur \mathbb{R} et à valeur dans \mathbb{C} . On suppose f périodique de période T

Alors $\forall a \in \mathbb{R}$

$$\int_{a}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt$$

Admise pour l'instant